If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/5^x-7=125^x
We move all terms to the left:
1/5^x-7-(125^x)=0
Domain of the equation: 5^x!=0We multiply all the terms by the denominator
x!=0/1
x!=0
x∈R
-125^x*5^x-7*5^x+1=0
Wy multiply elements
-625x^2-35x+1=0
a = -625; b = -35; c = +1;
Δ = b2-4ac
Δ = -352-4·(-625)·1
Δ = 3725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3725}=\sqrt{25*149}=\sqrt{25}*\sqrt{149}=5\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{149}}{2*-625}=\frac{35-5\sqrt{149}}{-1250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{149}}{2*-625}=\frac{35+5\sqrt{149}}{-1250} $
| 2(-1+-1.5y)+3y=-2 | | 2m2-4m-3=0 | | -3x=3-4x | | 3n+2/5=-5 | | 6x+8(8x-24)=18 | | -3x+4(3x-5)=-2 | | 4x-2(4)=-8 | | p^2+28=9p | | 2(x-4x+x-6x)+1=8 | | 10x-8=11x+9 | | -6x-24=-14-8x | | 10-20x-30x=-6+40-60x | | X=-1/5y+2y+2 | | -3x-9=-25-x | | 7(3x-4x)+3=28 | | 6x-8(6x+9)=12 | | 5h+1=4h-16 | | 5v+6=4v-10 | | -4y+7=-5 | | 7y-9-6y=1 | | 5h-9-10h=-69 | | 6w-8-4w=14 | | 9w-8w+8=17-4 | | 9w-8w-8=13 | | -4f(-3)=3(-3)-11 | | 27x-7=21x-70 | | 8x+7(19+-6x)=-3 | | 7(t−2)=21 | | 7/x+(3/10x-5)=(2/10x-5) | | 11+44x=0 | | -2x+4.5=7 | | 4x-14=x=85 |